Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite
نویسندگان
چکیده
Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.
منابع مشابه
Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes
Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surfac...
متن کاملEffect of dexamethasone-loaded poly(lactic-co-glycolic acid) microsphere/poly(vinyl alcohol) hydrogel composite coatings on the basic characteristics of implantable glucose sensors.
BACKGROUND Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can...
متن کاملSynthesis and swelling properties of a poly(vinyl alcohol)-based superabsorbing hydrogel
Article history: Received January 26, 2013 Received in Revised form May 10, 2013 Accepted 20 May 2013 Available online 24 May 2013 Superabsorbent hydrogels based on poly(vinyl alcohol) were prepared by a crosslinking technique using glutaraldehyde as a crosslinker. The hydrogel structure was confirmed using scanning electron microscopy (SEM). Results from SEM observation showed a porous structu...
متن کاملIn vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite.
A novel porous composite material composed of hydroxyapatite, poly(vinyl alcohol) (PVA), and gelatin (Gel) was fabricated by emulsification. Scanning electron microscopy showed that the material had a well-interconnected porous structure including many macropores (100-500 microm) and micropores (less than 20 microm) on their walls. The composite had a porosity of 78% and showed high water absor...
متن کاملEvaluation of morphology and cell behaviour of a novel synthesized electrospun poly(vinyl pyrrolidone)/poly(vinyl alcohol)/hydroxyapatite nanofibers
Objective(s): Three-dimensional structures such as nanofibrous scaffolds are being used in biomedical engineering as well as provide a site for cells to attach and proliferate leading to tissue formation. In the present study, poly(vinyl pyrrolidone) (PVP)/ poly(vinyl alcohol)(PVA) hybrid nanofibrous scaffold was synthesized by electrospinning. Materials and Methods: The effect of adding nano h...
متن کامل